首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9125篇
  免费   1356篇
  国内免费   321篇
电工技术   250篇
综合类   422篇
化学工业   919篇
金属工艺   411篇
机械仪表   1771篇
建筑科学   435篇
矿业工程   199篇
能源动力   363篇
轻工业   138篇
水利工程   61篇
石油天然气   382篇
武器工业   76篇
无线电   1175篇
一般工业技术   2758篇
冶金工业   111篇
原子能技术   347篇
自动化技术   984篇
  2024年   8篇
  2023年   91篇
  2022年   136篇
  2021年   247篇
  2020年   351篇
  2019年   307篇
  2018年   339篇
  2017年   390篇
  2016年   347篇
  2015年   450篇
  2014年   690篇
  2013年   810篇
  2012年   701篇
  2011年   735篇
  2010年   579篇
  2009年   585篇
  2008年   532篇
  2007年   615篇
  2006年   570篇
  2005年   489篇
  2004年   316篇
  2003年   300篇
  2002年   235篇
  2001年   195篇
  2000年   166篇
  1999年   132篇
  1998年   96篇
  1997年   75篇
  1996年   59篇
  1995年   62篇
  1994年   57篇
  1993年   27篇
  1992年   22篇
  1991年   25篇
  1990年   11篇
  1989年   9篇
  1988年   11篇
  1987年   3篇
  1986年   5篇
  1985年   2篇
  1984年   4篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1976年   1篇
  1963年   1篇
  1959年   4篇
  1958年   1篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
101.
102.
The wetting and drying of drops on flexible fibers occurs ubiquitously in nature, and the capillary force underlying this phenomenon has motivated our great interest in learning how to direct supramolecular self‐assembly. Here, the hierarchical co‐assembly of two aromatic peptides, diphenylalanine (FF) and ferrocene‐diphenylalanine (Fc‐FF), is reported via sequential, combinatorial assembly. The resulting dandelion‐like microstructures have highly complex architectures, where FF microtube arrays serve as the scapes and the Fc‐FF nanofibers serve as the flower heads. Homogeneous FF microtubes with diameters tailored between 1 and 9 μm and wall thickness ranging from 70 to 950 nm are initially formed by controlling the degree of supersaturation of the FF and the water content. Once the FF microtubes are formed, the growth of the dandelion‐like microstructures is then driven by the capillary force, derived from the wetting and drying of the Fc‐FF solution on the FF microtubes. This simple and ingenious strategy offers many opportunities to develop new and creative methods for controlling the hierarchical self‐assembly of peptides and thus building highly complex nano and microstructures.  相似文献   
103.
Discotic hexa‐peri‐hexabenzocoronene (HBC) molecules are synthesized by electrochemical cyclodehydrogenation reaction and in situ self‐assembled to π‐electronic, discrete nanofibular objects with an average diameter about 70 nm, which are deposited directly onto the electrode. The nanofibers consist of columnar arrays of the π‐stacked HBC molecules and the intercolumnar distance is determined to be 1.19 nm by X‐ray diffraction, which corresponds well to the distance of 1.1 nm observed by high‐resolution transmitting electron microscopy. The diameter of the molecular columns matches the size of the discotic HBC molecule indicating face‐to‐face π‐stacking of HBC units in the column. The HBC nanofibers on electrode are redox active, and the nanosized columnar structures provide a huge surface area, which is a great benefit for the charging/discharging process, delivering excellent capacitance of 155 F g?1. The described electrochemical deposition method shows great advantage for self‐assembling the family of insoluble and structurally designable graphene‐like nano materials, which constitutes an important step toward molecular electronics.  相似文献   
104.
Biology provides a range of materials, mechanisms, and insights to meet the diverse requirements of nanomedicine. Here, a biologically based nanoparticle coating system that offers three characteristic features is reported. First, the coating can be self‐assembled through a noncovalent biospecific interaction mechanism between a lectin protein (Concanavalin A) and the polysaccharide glycogen. This biospecific self‐assembly enables the coating to be applied simply without the generation of covalent bonds. Second, glycoprotein‐based biofunctionality can be incorporated into the coating through the same noncovalent biospecific interaction mechanism. Here, the glycoprotein transferrin is incorporated into the coating since this moiety is commonly used to target cancer cells through a receptor‐mediated endocytosis mechanism. Third, the coating can be triggered to disassemble in response to a reduction in pH that is characteristic of endosomal uptake. In a proof‐of‐concept study, comparing coated and uncoated nanoparticles, model drug‐loaded nanoparticles (doxorubicin‐loaded mesoporous silica nanoparticles) are prepared and it is observed that the coated nanoparticle has enhanced cytotoxicity for cancer cell lines but attenuated cytotoxicity for noncancerous cell lines. These studies demonstrate that biology provides unique materials and mechanism appropriate to meet the needs for emerging applications in the medical and life sciences.  相似文献   
105.
Thin films of block copolymers are extremely attractive for nanofabrication because of their ability to form uniform and periodic nanoscale structures by microphase separation. One shortcoming of this approach is that to date the design of a desired equilibrium structure requires synthesis of a block copolymer de novo within the corresponding volume ratio of the blocks. In this work, solvent vapor annealing in supported thin films of poly(2‐hydroxyethyl methacrylate)‐block‐poly(methyl methacrylate) [PHEMA‐b‐PMMA] by means of grazing incidence small angle X‐ray scattering (GISAXS) is investigated. A spin‐coated thin film of a lamellar block copolymer is solvent vapor annealed to induce microphase separation and improve the long‐range order of the self‐assembled pattern. Annealing in a mixture of solvent vapors using a controlled volume ratio of solvents, which are chosen to be preferential for each block, enables selective formation of ordered lamellae, gyroid, hexagonal, or spherical morphologies from a single‐block copolymer with a fixed volume fraction. The selected microstructure is then kinetically trapped in the dry film by rapid drying. This paper describes what is thought to be the first reported case where in situ methods are used to study the transition of block copolymer films from one initial disordered morphology to four different ordered morphologies, covering much of the theoretical diblock copolymer phase diagram.  相似文献   
106.
Hierarchically porous composites with mesoporous carbon wrapping around the macroporous graphene aerogel can combine the advantages of both components and are expected to show excellent performance in electrochemical energy devices. However, the fabrication of such composites is challenging due to the lack of an effective strategy to control the porosity of the mesostructured carbon layers. Here an interface‐induced co‐assembly approach towards hierarchically mesoporous carbon/graphene aerogel composites, possessing interconnected macroporous graphene networks covered by highly ordered mesoporous carbon with a diameter of ≈9.6 nm, is reported. And the orientation of the mesopores (vertical or horizontal to the surface of the composites) can be tuned by the ratio of the components. As the electrodes in supercapacitors, the resulting composites demonstrate outstanding electrochemical performances. More importantly, the synthesis strategy provides an ideal platform for hierarchically porous graphene composites with potential for energy storage and conversion applications.  相似文献   
107.
In this work, a facile method to deposit fast growing electrochromic multilayer films with enhanced electrochemical properties using layer‐by‐layer (LbL) self‐assembly of complex polyelectrolyte is demonstrated. Two linear polymers, poly(acrylic acid) (PAA) and polyethylenimine (PEI), are used to formulate stable complexes under specific pH to prepare polyaniline (PANI)/PAA‐PEI multilayer films via LbL deposition. By introducing polymeric complexes as building blocks, [PANI/PAA‐PEI]n films grow much faster compared with [PANI/PAA]n films, which are deposited under the same condition. Unlike the compact [PANI/PAA]n films, [PANI/PAA‐PEI]n films exhibit porous structure that is beneficial to the electrochemical process and leads to improved electrochromic properties. An enhanced optical modulation of 30% is achieved with [PANI/PAA‐PEI]30 films at 630 nm compared with the lower optical modulation of 11% measured from [PANI/PAA]30 films. The switching time of [PANI/PAA‐PEI]30 films is only half of that of [PANI/PAA]30 films, which indicates a faster redox process. Utilizing polyelectrolyte complexes as building blocks is a promising approach to prepare fast growing LbL films for high performance electrochemical device applications.  相似文献   
108.
For organic photovoltaic (OPV) cells based on the bulk heterojunction (BHJ) structure, it remains challenging to rationally control the degree of phase separation and percolation within blends of donors and acceptors to secure optimal charge separation and transport. Reported is a bottom‐up, supramolecular approach to BHJ OPVs wherein tailored hydrogen bonding (H‐bonding) interactions between π‐conjugated electron donor molecules encourage formation of vertically aligned donor π‐stacks while simultaneously suppressing lateral aggregation; the programmed arrangement facilitates fine mixing with fullerene acceptors and efficient charge transport. The approach is illustrated using conventional linear or branched quaterthiophene donor chromophores outfitted with terminal functional groups that are either capable or incapable of self‐complementary H‐bonding. When applied to OPVs, the H‐bond capable donors yield a twofold enhancement in power conversion efficiency relative to the comparator systems, with a maximum external quantum efficiency of 64%. H‐bond promoted assembly results in redshifted absorption (in neat films and donor:C60 blends) and enhanced charge collection efficiency despite disparate donor chromophore structure. Both features positively impact photocurrent and fill factor in OPV devices. Film structural characterization by atomic force microscopy, transmission electron microscopy, and grazing incidence wide angle X‐ray scattering reveals a synergistic interplay of lateral H‐bonding interactions and vertical π‐stacking for directing the favorable morphology of the BHJ.  相似文献   
109.
The availability of precisely modulated chemical modifications dramatically affects the physicochemical properties of pristine drugs and should facilitate the amphiphilic self‐assembly of prodrugs into supramolecular nanoprodrugs (SNPs). However, rationally designing such prodrugs to achieve favorable clinical outcomes still remains a challenge. Here, a library of prodrugs through site‐specific attachment of a variety of lipophilic moieties to the antitumor agent SN‐38 (7‐ethyl‐10‐hydroxycamptothecin) is constructed. Taking advantage of the role of hydroxyl groups as solvophilic moieties, these prodrugs exhibit self‐assembly in aqueous environments, allowing for the identification of five prodrugs capable of self‐assembling into SNPs at high drug concentrations. Importantly, in vivo studies demonstrate that the antitumor activity of the SNPs correlates well with their stability and long‐term circulation. In addition, the modular feature of this SNP design strategy offers the opportunity to readily incorporate additional valuable functionalities (e.g., tumor‐specific targeting ligands) to the particle surface, which is further exploited to improve antitumor efficacy in mouse xenograft models. Thus, this structure‐based reconstruction of SN‐38 molecules significantly improves the potency of SNPs for clinical use. These results also provide novel mechanistic insights into the rational design of prodrugs.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号